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The buoyancy-induced flow in a horizontal open-ended cavity has been investigated from three perspec-
tives: (a) assessment of the validity of an existent similarity solution, (b) computational issues relevant to
numerical simulation, and (c) obtainment and presentation of results of practical utility. Parameter
ranges were sought within which the similarity solution might be valid, but no such ranges could be
identified. The inapplicability of the similarity model may be attributed to the neglect of the streamwise
second derivatives in the governing conservation equations and to the model’s inability to accommodate
boundary conditions at the opening of the channel. The numerical issues that were dealt with included
the proper extension of the solution domain into the far field external to the channel, the appropriate
boundary conditions on the surfaces of the extended domain, and meshing to achieve high accuracy.
Local Nusselt numbers and their variation along the walls of the channel are presented.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The past quarter century has seen an evolving literature dealing
with a pair of closely related natural convection problems involv-
ing the buoyancy-driven interaction of fluid in a semi-confined
space with fluid in an extensive external space. One of these prob-
lems, often termed the open-ended cavity, is a horizontal parallel-
walled channel that is open at both ends and which interacts with
an extensive space adjacent to the respective ends. The second
problem is either called the partially open cavity or the open cav-
ity. It consists of a horizontal channel closed at one end and open to
an extensive space at its other end. The applications of these fun-
damental problems include electronic equipment cooling, fire inci-
dents in internal spaces, chemical vapor deposition systems, solar
collectors, and nuclear reactor incidents.

An early and truly seminal contribution to this problem area is
that of Bejan [1]. Following a model for buoyant flow in a vertical,
open thermosyphon due to Lighthill [2], Bejan developed a solution
for the fluid flow and heat transfer within an open cavity without
having to take account of the fluid in the space external to the cav-
ity. The solution was actually a similarity solution, generically re-
lated to the celebrated Blasius solution for forced convection
flow over a flat plate. In both these cases, the basic two-dimen-
sional partial differential equations which govern the respective
ll rights reserved.

).
problems are reduced to ordinary differential equations by a simi-
larity transformation.

Notwithstanding the elegance of similarity solutions, it is
widely understood that they have numerous practical limitations
which restrict their applicability. For instance, for the venerable
Blasius flat-plate problem, there are both Reynolds and Prandtl
number (for heat transfer) limitations in addition to the plate thin-
ness requirement.

One of the goals of the present investigation is to define the
parametric ranges of applicability of the Bejan similarity solution
for the open cavity. The dimensionless parameters that character-
ize the problem are the Rayleigh number, Prandtl number, and the
cavity aspect ratio. This goal will be achieved by a benchmark-
quality numerical simulation of the problem.

Another goal of this work is to deal definitively with three is-
sues which have impacted prior numerical simulations of the prob-
lem. They are: (a) the extension of the solution domain into the
external space adjacent to the cavity opening(s), (b) the boundary
conditions applied to the surfaces of the extended domain, and (c)
the mesh density used in the numerical solutions.

The extended solution domains used by Penot [3] and by Chan
and Tien [4] were inappropriately small. In addition, the grid den-
sity (800 and 2000 elements, respectively) is insufficient when
judged by current standards. In addition, the boundary conditions
applied to the surfaces of the extended domain do not express real-
ity. Vafai and Ettefagh [5] demonstrated the importance of a large
extended solution domain. The boundary conditions applied to the
surfaces of the extended domain are those presently regarded as

mailto:esparrow@umn.edu
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Nomenclature

cp specific heat
Gr Grashof number, Eq. (2)
g acceleration of gravity
H height of cavity
h heat transfer coefficient, Eq. (9)
k thermal conductivity
L length of channel
Nu Nusselt number, Eq. (10)
n surface normal
P dimensionless pressure, Eq. (1)
p pressure
Pr Prandtl number, Eq. (2)
q local heat flux
Ra Rayleigh number, Eq. (2)
T temperature
Tw wall temperature
T1 far-field temperature

U, V dimensionless velocities, Eq. (1)
u, v velocity components
X, Y dimensionless Cartesian coordinates, Eq. (1)
x, y Cartesian coordinates

Greek
b coefficient of thermal expansion
h dimensionless temperature, Eq. (1)
l viscosity
m kinematic viscosity
q density
q1 density in the far field
s temperature profile shape, Eq. (8)
/0 velocity profile shape, Eq. (7)

Subscript
pen penetration depth
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applicable to outflow boundaries, and the mesh density was not
specified. Follow-on papers by Khanafer and Vafai [6,7] also im-
posed outflow conditions on the boundaries of the extended solu-
tion domain. These authors also attempted to find a set of fictive
boundary conditions to be applied at the open end of the cavity
whose use would obviate the need for an extended solution do-
main. However, according to Icoz and Jaluria [8], these fictive
boundary conditions are applicable only to specific geometries
and limited flow conditions.

The focus of the aforementioned Icoz–Jaluria paper was an
open-ended channel with heat sources protruding into the chan-
nel. The solution domain was not extended into the space exter-
nal to the channel. Very recently, Andreozzi et al. [9] numerically
investigated an open-ended cavity having thermal boundary
conditions different from those of preceding studies. An extended
solution domain of unspecified size was used, but the
schematic diagram of the problem, if to scale, suggests possible
sizewise insufficiency. The boundary conditions applied at the
surfaces of the extended domain totally precluded vertical flow
there.

The simulation model used here eliminates all of the issues of
uncertainty that were identified in the preceding paragraphs and,
thereby, provides results of impeccable accuracy.
Fig. 1. Schematic diagram of the open cavity and the solution domain.
2. The solution domain and boundary conditions

A schematic diagram of the open cavity and of the adjacent fluid
environment is exhibited in Fig. 1. The diagram also shows, as a
dashed-line closed contour, the solution domain within which
the numerical simulations are to be performed. Consistent with
the two-dimensional model displayed in the figure, the coordi-
nates are x and y, and the length and height dimensions of the cav-
ity are L and H, respectively. The cavity aspect ratio AR is equal to L/
H. The extended solution domain, the rectangle ABCDA, is much
larger in size than the cavity proper in accordance with the con-
cerns discussed earlier. In particular, the width and total height
of the extended domain are 10H and 18H, respectively.

The boundary conditions at the walls of the cavity proper were
selected to facilitate the assessment of the validity of the similarity
solution of [1]. The no-slip and impermeability conditions require
that the velocity components u and v are zero on all the cavity
walls. In addition, all of the walls of the cavity are isothermal at
a common temperature Tw.
The vertical walls that flank the cavity opening from above and
below are adiabatic and are also surfaces of zero velocity. In the
external environment at locations sufficiently far from the cavity
opening, the temperature is T1, and the velocities are vanishingly
small. The application of these far-field boundary conditions is
not a straightforward matter and may have been mishandled in
prior investigations.

In this regard, representative treatments of the far-field bound-
ary conditions in the relevant published literature will be dis-
cussed. In one paper, the vertical velocity v was set equal to zero
on all the bounding surfaces AB, BC, and CD of the extended solu-
tion domain (Fig. 1). This model totally blocked any fluid from
entering the domain across CD and from leaving the domain across
AB. At one of these boundaries, the temperature was assigned the
value T1, while the other boundaries were specified as being adia-



3852 S.K.S. Boetcher, E.M. Sparrow / International Journal of Heat and Mass Transfer 52 (2009) 3850–3856
batic. These conditions are believed to be too inflexible to permit
the natural fluid flow and thermal process to occur.

In other papers, adiabatic conditions were applied at all the
boundaries AB, BC, and CD. These assignments preclude the speci-
fication of the environment temperature T1 at boundary locations
at which there is fluid inflow. In still another paper, both velocity
components were set equal to zero on AB, BC, and CD, and T = T1
there. This is another case of conditions that were specified too
strongly. In a unique treatment, boundary conditions were chosen
primarily to provide more stable solutions and faster convergence.

The foregoing discussion casts a cloak of uncertainty on the pre-
ceding implementations of the far-field boundary conditions. The
approach used here is tailored to enable natural fluid flow and
thermal processes to occur in the far field. The implementation
of this approach was accomplished by means of ANSYS CFX 11.0
software. In particular, the opening boundary condition permits
the fluid to enter or leave across a boundary in accordance with
the dynamics of the situation. If fluid passes into the solution do-
main across a boundary, the temperature is specified as T1 at the
crossing point. At boundary locations where there is fluid outflow,
the standard thermal outflow condition, zero second derivative of T
with respect to the surface normal is imposed, where n is the sur-
face normal. It is believed that the present far-field treatment clo-
sely models events in the far field.

To facilitate the numerical solution, the domain was meshed by
means of ANSYS ICEM which is a meshing tool. This high-end
mesher provides outstanding control of the discretization process.
In particular, it was used to create a brick mesh, which is known to
be the most accurate form of mesh. All told, the mesh consisted of
282,000 nodes and 140,000 elements.

The attainment of converged numerical solutions for buoyant
flows is especially demanding when a significant portion of the
solution domain is not bounded by walls, as is true in the present
instance. The difficulty is aggravated at higher values of the Ray-
leigh number. The strategy used to cope with this situation was
to initiate the solution task at the lowest Rayleigh number consid-
ered, namely, Ra = 100. For this Rayleigh number, and for a selected
aspect ratio AR, a solution was obtained in which the normalized
RMS values of the residuals attained values of at least 10�6 for all
of the dependent variables. Then, for the same aspect ratio, atten-
tion was turned to Ra = 1000. The starting values for this case were
taken from the converged solution for Ra = 100. The same approach
was used to proceed to higher values of Ra.

The final set of solutions encompassed Ra values of 100, 1000,
and 10,000 for each of four aspect ratios AR = 2, 5, 10, and 20.
3. The governing equations

The governing equations were cast in dimensionless form for
computational convenience, and the dimensionless variables and
parameters are defined in Eqs. (1) and (2). The buoyancy term that
appears in the Y-momentum equation is based on the Boussinesq
equation of state. Aside from the density variation that underlies
the buoyancy term, all the thermophysical properties are constant.

ðU;VÞ ¼ ðu;vÞ
m=H

; ðX;YÞ ¼ ðx;yÞ
H

; P ¼ pþq1gy

qðm=HÞ2
; h¼ T � T1

Tw� T1
ð1Þ

Gr ¼ gbðTw� T1ÞH3

m2 ; Pr ¼ cpl
k
; Ra¼ GrPr ð2Þ
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" #
ð6Þ
4. Results and discussion

Three categories of results will be presented and discussed. The
focus of the first category is to assess the validity of the similarity
solution of [1]. In the second category of results, representative
patterns of fluid flow will be exhibited. Also presented in this cat-
egory is the penetration distance of the external air into the cavity.
The third category conveys heat transfer results at the bounding
walls of the cavity.

4.1. Similarity issues

The key assumptions that underlie the similarity model of [1]
are that the respective shapes of the velocity and temperature pro-
files are independent of the longitudinal position in the cavity. In
[1], the shape of the profile of the streamwise velocity u (or U) is
expressed by the function /0(Y). From the numerical solutions ob-
tained here, /0(Y) may be evaluated from

/0 ¼ U
Xpen � X

� �
Pr ð7Þ

In this equation, U is the dimensionless streamwise velocity which
is a function of X and Y. The quantity Xpen is the dimensionless dis-
tance from the cavity opening to which the buoyancy-driven flow
penetrates into the cavity, and X is the dimensionless streamwise
coordinate measured from the cavity opening (Fig. 1). The Prandtl
number Pr was taken to be 0.7 which corresponds to air and other
gases.

The quantity /0 was evaluated from Eq. (7) as a function of X
and Y for all 12 of the cases dealt with here. However, in view of
space limitations, only representative results will be presented.
To this end, Figs. 2–5 have been prepared. These figures are for
Ra = 1000 (the intermediate Ra value considered here) and for
Fig. 2. Profiles of /0 at various streamwise locations for AR = 2 and Ra = 1000.



Fig. 3. Profiles of /0 at various streamwise locations for AR = 5 and Ra = 1000.

Fig. 4. Profiles of /0 at various streamwise locations for AR = 10 and Ra = 1000.

Fig. 5. Profiles of /0 at various streamwise locations for AR = 20 and Ra = 1000.

Fig. 6. Profiles of s at various streamwise locations for AR = 2 and Ra = 1000.
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aspect ratios AR = 2, 5, 10, and 20. In each figure, profiles of /0 ver-
sus Y are plotted for parametric values of X between 0 and Xpen.

For the assessment of these figures, it is relevant to recall that
the basis of the similarity model of [1] is that /0 depends only on
Y and is independent of X. The results set forth in the figures do
not support this model. Clearly, /0 is a strong function of X, with
the largest /0 values occurring at X = 0 and the smallest at X = Xpen.

Other figures, respectively, for Ra = 100 and 10,000 and for
AR = 2, 5, 10, and 20, display behaviors identical to those in evi-
dence in Figs. 2–5. On this basis, it may be concluded that the sim-
ilarity model is not valid for 100 < Ra < 10,000 and 2 < AR < 20.

The other tenet which underlies the similarity model of [1] is
that the shape of the temperature profiles is a unique function of
the cross-sectional coordinate Y and is independent of the longitu-
dinal coordinate X. In the notation of [1], the temperature shape
function is denoted by s(Y). In terms of the variables of the present
analysis,

s ¼ ðh� 1ÞRa

ðXpen � XÞ2
ð8Þ

Eq. (8) was used in conjunction with the present numerical solu-
tions to evaluate s as a function of X and Y for all 12 of the investi-
gated cases. Once again, it is sufficient to display representative
results as conveyed in Figs. 6–9. These figures correspond to
Ra = 1000 and to AR = 2, 5, 10, and 20, the same cases as parameter-
ized Figs. 2–5. In each figure, s is plotted as a function of Y for para-
metric values of X.

The critical issue to be considered in the appraisal of Figs. 6–9 is
the marked dependence of s on X. This X-dependence contradicts
the s = s(Y) assumption that underlies the similarity model of [1].
Figures that correspond to the other eight cases considered here
show X-dependences that are similar to those seen in Figs. 6–9.
These findings reinforce the aforementioned conclusion about the
inappropriateness of the similarity model for the ranges of Ra
and AR investigated here.

4.2. Patterns of fluid flow

A display of representative fluid-flow patterns is presented in
Figs. 10–13 in the form of streamlines. The successive figures cor-
respond to Ra = 1000 and to AR = 2, 5, 10, and 20. Each figure exhib-
its a to-scale depiction of the solution domain which includes the
heated channel and the space external to the channel opening.
Note that the encompassed external space is the same for all of
the figures but that the channel becomes elongated with increasing
values of the aspect ratio AR.

Attention will first be turned to the streamlines that depict the
pattern of fluid flow within the channel proper and in the external



Fig. 7. Profiles of s at various streamwise locations for AR = 5 and Ra = 1000.

Fig. 8. Profiles of s at various streamwise locations for AR = 10 and Ra = 1000.

Fig. 9. Profiles of s at various streamwise locations for AR = 20 and Ra = 1000.

Fig. 10. Streamline patterns for AR = 2 and Ra = 1000.

Fig. 11. Streamline patterns for AR = 5 and Ra = 1000.

Fig. 12. Streamline patterns for AR = 10 and Ra = 1000.
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Fig. 13. Streamline patterns for AR = 20 and Ra = 1000.
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space immediately adjacent to the channel opening. Of particular
note is the depth to which the flow penetrates into the channel.
For AR = 2, the penetration is complete in that the moving fluid
washes over the wall which bounds the closed end of the channel.
However, for all the other aspect ratios (5, 10, and 20), total pene-
tration is no longer achieved. In fact, for these cases, the penetra-
tion depth is virtually independent of the aspect ratio.

The latter observation is reinforced by the information that is
conveyed in Table 1, where dimensionless penetration depths Xpen

are listed as functions of Ra and AR. Not unexpectedly, there is a
tendency of the penetration depth to increase with increasing Ray-
leigh number.

Focus may now be returned to Figs. 10–13 and to the flow pat-
terns in the neighborhood of the channel inlet. From the streamline
shapes, it can be inferred that the flow which enters the channel
from below possesses both axial and cross-stream (i.e., vertical)
velocity components.

A similar inference follows from inspection of the streamlines of
the fluid leaving the channel. These observations can be contrasted
with the streamline pattern based on the similarity model of [1].
Inspection of the streamlines displayed in Fig. 5 of [1] reveals a
strictly axial inflow and outflow at the channel inlet. This depar-
ture from reality is due to the total neglect of the space external
to the channel in the similarity model.

Figs. 10–13 show that the flow entering the channel comes from
the portion of the external space that is situated at elevations low-
er than that of the channel opening. The buoyant fluid leaving the
channel initiates a boundary flow along the vertical wall which ex-
tends upward from the channel opening. The boundary layer is
thickened by means of entrainment of fluid from the farther
reaches of the external space.

4.3. Nusselt numbers

The quantity of most direct practical utility is the heat transfer
coefficient and its variation along the walls of the channel. The lo-
cal heat transfer coefficient is defined as
Table 1
Penetration depths Xpen.

Aspect ratio

Ra 2 5 10 20

102 2.00 3.50 3.50 3.50
103 2.00 4.00 4.00 4.00
104 2.00 4.25 4.25 4.25
h ¼ q
Tw � T1

ð9Þ

where q is the local heat flux. A dimensionless presentation of h is
made by means of the local Nusselt number Nu, where

Nu ¼ hH
k

ð10Þ

The Nusselt number results are presented in Figs. 14–17, which
respectively correspond to aspect ratios AR = 2, 5, 10, and 20. Each
figure contains six curves. The three dashed curves represent the
Nusselt number values at the lower wall of the channel, while
the continuous curves are for the upper-wall Nusselt numbers.
That the lower-wall Nusselt numbers exceed those of the upper
wall is consistent with the streamline patterns of Figs. 10–13.
Those figures show that the fluid washing over the lower wall
comes from the external environment whose temperature, T1, is
the lowest temperature of the system. On the other hand, the fluid
that washes over the upper wall has been preheated from its con-
tact with the lower wall.

The variation of the Nusselt number along the length of the chan-
nel walls reflects the impacts of two processes. First, due to the heat
absorbed by the fluid as it penetrates the channel, the local wall-to-
fluid temperature difference decreases with increasing distance
from the channel opening. This process gives rise to the decreasing
values of the Nusselt number with x. The second process relates to
the local maximum in each one of the Nusselt number distributions.
These maxima occur very near the channel inlet (i.e., at small x). The
shape of the Nusselt number curves in this region is a clear indicator
of the presence of a recirculation zone. It is well established that the
local maximum is related to the reattachment of the separated flow
to the wall. As expected, the higher the Rayleigh number, the higher
is the Nusselt number. However, the role of the aspect ratio merits
some discussion. In this regard, note that for AR = 2, Fig. 14, the ab-
scissa variable is x/L, whereas for the other aspect ratios, Figs. 15–
17, the abscissa is x/xpen. This distinction reflects the fact that the
fluid fully penetrates the AR = 2 channel whereas only partial pene-
tration occurs for the other aspect ratios. Thus, there is active heat
transfer over all along the channel walls for AR = 2, but not for the
other cases. It is interesting to note that since the Nusselt number
maxima occurs near the channel opening, the magnitudes of the
maxima are insensitive to the aspect ratio.

5. Concluding remarks

The goals of this research are to (a) assess the validity of a sim-
ilarity-solution model of the problem, (b) deal definitively with
Fig. 14. Nu numbers for various Ra numbers for AR = 2.



Fig. 15. Nu numbers for various Ra numbers for AR = 5.

Fig. 16. Nu numbers for various Ra numbers for AR = 10.

Fig. 17. Nu numbers for various Ra numbers for AR = 20.

3856 S.K.S. Boetcher, E.M. Sparrow / International Journal of Heat and Mass Transfer 52 (2009) 3850–3856
critical issues related to the numerical simulation of the problem,
and (c) provide results of practical utility.

The similarity-solution model is, in effect, a boundary-layer
model. As is usual in such models, the streamwise second deriva-
tives are omitted. Of perhaps greater significance is that the
boundary conditions at the channel opening have to be left unspec-
ified in the similarity model. As a consequence, the flow within the
channel is totally uninformed about any happenings which might
occur in the space external to the channel.

When this work was undertaken, the initial intent was to deter-
mine the ranges of the relevant parameters for which the similarity
solutions would be valid. However, as demonstrated in Figs. 2–9, it
was not possible, within the ranges examined here, to find any
conditions for which the similarity model is valid. In particular,
according to the similarity model, the function /0 should be inde-
pendent of the horizontal coordinate x, which clearly is not sup-
ported by the results of Figs. 2–9.

The simulation issues of interest are the size of the external
solution domain, the use of appropriate boundary conditions on
the surfaces of the external solution domain, and the mesh density.
All of these issues have been rectified in the present simulation.

Numerical results are presented for the local Nusselt number
and its variation along the walls of the channel. In general, the
highest Nusselt number values occur near the channel opening.
The shape of the Nusselt number variation indicates a zone of flow
separation near the opening of the channel.
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